Graph Algebras and Orbit Equivalence
نویسنده
چکیده
We introduce the notion of orbit equivalence of directed graphs, following Matsumoto’s notion of continuous orbit equivalence for topological Markov shifts. We show that two graphs in which every cycle has an exit are orbit equivalent if and only if there is a diagonal-preserving isomorphism between their C∗-algebras. We show that it is necessary to assume that every cycle has an exit for the forward implication, but that the reverse implication holds for arbitrary graphs. As part of our analysis of arbitrary graphs E we construct a groupoid G(C∗(E),D(E)) from the graph algebra C∗(E) and its diagonal subalgebra D(E) which generalises Renault’s Weyl groupoid construction applied to (C∗(E),D(E)). We show that G(C∗(E),D(E)) recovers the graph groupoid GE without the assumption that every cycle in E has an exit, which is required to apply Renault’s results to (C∗(E),D(E)). We finish with applications of our results to out-splittings of graphs and to amplified graphs.
منابع مشابه
Notes from Hausdorff Institute Talk Oct 10, 2013
(a) isomorphism ∼=, elementary equivalence ≡, elementary equivalence ≡α for Lω1,ω sentences of rank < α. (b) Isomorphism of countable graphs, linear orders, countable Boolean algebras is ≤B complete for orbit equivalence relations of continuous S∞ actions (≤B is Borel reducibility, S∞ is the Polish group of permutations of ω). (c) for ∼= is partially answered in computable model theory, with no...
متن کاملC*-algebraic Characterization of Bounded Orbit Injection Equivalence for Minimal Free Cantor Systems
Bounded orbit injection equivalence is an equivalence relation defined on minimal free Cantor systems which is a candidate to generalize flip Kakutani equivalence to actions of the Abelian free groups on more than one generator. This paper characterizes bounded orbit injection equivalence in terms of a mild strengthening of Rieffel-Morita equivalence of the associated C*-crossed-product algebra...
متن کاملDynamic equivalence relation on the fuzzy measure algebras
The main goal of the present paper is to extend classical results from the measure theory and dynamical systems to the fuzzy subset setting. In this paper, the notion of dynamic equivalence relation is introduced and then it is proved that this relation is an equivalence relation. Also, a new metric on the collection of all equivalence classes is introduced and it is proved that this metric is...
متن کاملThe graph of equivalence classes and Isoclinism of groups
Let $G$ be a non-abelian group and let $Gamma(G)$ be the non-commuting graph of $G$. In this paper we define an equivalence relation $sim$ on the set of $V(Gamma(G))=Gsetminus Z(G)$ by taking $xsim y$ if and only if $N(x)=N(y)$, where $ N(x)={uin G | x textrm{ and } u textrm{ are adjacent in }Gamma(G)}$ is the open neighborhood of $x$ in $Gamma(G)$. We introduce a new graph determined ...
متن کاملTransverse properties of dynamical systems
Roughly speaking, two dynamical systems are transversally equivalent if they have the same space of orbits; a property is transverse if it is preserved under transverse equivalence. Various notions of transverse equivalence have been defined: among them, similarity of measured groupoids, Morita equivalence of locally compact groupoids, stable orbit equivalence of measure equivalence relations. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015